Loading.
Hide Menu Show Menu

Math Help for Section 3.7, Page 154

Solving
Equations Involving Absolute Value

If two algebraic expressions are equal in absolute value, they must
either be
equal to each other or be the opposites
of each other. So, you can
solve equations
of the form $|ax+b|=|cx+d|$ by forming the two linear equations

    $\color{red}\overbrace{{\color{black}
ax+b=cx+d}}
^{\text{Expressions equal}}$  
 and  
 $\color{red}\overbrace{{\color{black} ax+b=-(cx+d)}}
^{\text{Expressions opposite}}$.

Example
4: Check

$x=3$:

    $\eqalign{|3x-4|=&|7x-16|
&{\small\color{red}\quad\quad\text{Write original equation.}}
\cr |3({\color{red}3})-4|\overset{?}{=}&|7({\color{red}3})-16|
&{\small\color{red}\quad\quad\text{Substitute 3 for }x.} \cr
|9-4|\overset{?}{=}&|21-16|
&{\small\color{red}\quad\quad\text{Multiply.}}
\cr |5|\overset{?}{=}&|5|
&{\small\color{red}\quad\quad\text{Subtract.}} \cr 5=&5
&{\small\color{red}\quad\quad\text{Solution checks.
}\checkmark}
}$

$x=2$:

    $\eqalign{|3x-4|=&|7x-16|
&{\small\color{red}\quad\quad\text{Write original equation.}}
\cr |3({\color{red}2})-4|\overset{?}{=}&|7({\color{red}2})-16|
&{\small\color{red}\quad\quad\text{Substitute 2 for }x.} \cr
|6-4|\overset{?}{=}&|14-16|
&{\small\color{red}\quad\quad\text{Multiply.}}
\cr |2|\overset{?}{=}&|-2|
&{\small\color{red}\quad\quad\text{Subtract.}} \cr 2=&2
&{\small\color{red}\quad\quad\text{Solution checks.
}\checkmark}
}$

Example
5: Check

$x=-8$:

    $\eqalign{|x+5|=&|x+11|
&{\small\color{red}\quad\quad\text{Write original equation.}}
\cr |{\color{red}-8}+5|\overset{?}{=}&|{\color{red}-8}+11|
&{\small\color{red}\quad\quad\text{Substitute }-8\text{ for
}x.} \cr
|-3|\overset{?}{=}&|3|
&{\small\color{red}\quad\quad\text{Add.}}
\cr  3=&3
&{\small\color{red}\quad\quad\text{Solution checks.
}\checkmark}
}$



 

Contact

If you are in need of technical support, have a question about advertising opportunities, or have a general question, please contact us by phone or submit a message through the form below.