Loading.
Hide Menu Show Menu

Math Help for Section 3.7, Page 156

Study
Tip

An absolute
value inequality of the form $|x|<a$  (or $|x|\le a$)
can be
solved with a double inequality, but an inequality of the
form $|x|>a$  (or $|x|\ge a$)
cannot. Instead, you
must solve two separate
inequalities, as demonstrated
in Example 7 on page 90.

Example
7: Tip

The solution set in set notation is $\{x|x\le
-{1\over3}\}\cup\{x|x\ge 3\}$.

Example
7: Check

The solution was found to be $x\le -{1\over3}$ or $x\ge 3$, so check
that
$x=-{1\over3}$ and $x=3$
satisfy the inequality and that $x=0$ does not. 

$x=-{1\over3}$:
  $\eqalign{|3x-4|\ge & 5
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr \left|3\left({\color{red}-{1\over3}}\right)-4\right|
\overset{?}{\ge}& 5 &{\small\color{red}\quad\quad
\text{Substitute }-{1\over3}\text{ for }x.}
\cr |-1-4|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Multiply.}} \cr 
|-5|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 5\ge
& 5 &{\small\color{red}\quad\quad
\text{Solution
checks. }\checkmark} } $
$x=3$:
$\eqalign{|3x-4|\ge & 5
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr |3({\color{red}3})-4|
\overset{?}{\ge}& 5 &{\small\color{red}\quad\quad
\text{Substitute }3\text{ for }x.}
\cr |9-4|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Multiply.}} \cr 
|5|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 5\ge
& 5 &{\small\color{red}\quad\quad
\text{Solution
checks. }\checkmark} } $
$x=0$:
$\eqalign{|3x-4|\ge & 5
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr |3({\color{red}0})-4|
\overset{?}{\ge}& 5 &{\small\color{red}\quad\quad
\text{Substitute }0\text{ for }x.}
\cr |0-4|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Multiply.}} \cr 
|-4|\overset{?}{\ge}& 5
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 4\not\ge
& 5 &{\small\color{red}\quad\quad
\text{Solution does not
check. ✗ }} } $

Example
8: Tip

The solution set in set notation is $\{x|\,5.97\le x\le6.03\}$.

Example 8: Check
The solution was found to be $5.97\le x\le6.03$, so check
that
$x=6$
satisfies the inequality and that $x=5$ and $x=7$ do not. 

$x=6$:
  $\eqalign{\left|2-{x\over3}\right| \le & 0.01
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr \left|2-{{\color{red}6}\over3}\right|
\overset{?}{\le}& 0.01 &{\small\color{red}\quad\quad
\text{Substitute 6 for }x.}
\cr |2-2|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Divide.}} \cr 
|0|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 0\le
& 0.01 &{\small\color{red}\quad\quad
\text{Solution
checks. }\checkmark} } $
$x=5$:
$\eqalign{\left|2-{x\over3}\right| \le & 0.01
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr \left|2-{{\color{red}5}\over3}\right|
\overset{?}{\le}& 0.01 &{\small\color{red}\quad\quad
\text{Substitute 5 for }x.}
\cr |2-1.\overline{6}|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Write }{5\over3}\text{ as }1.\overline{6}.} \cr 
|0.\overline{3}|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 0.\overline{3}\not\le
& 0.01 &{\small\color{red}\quad\quad
\text{Solution
does not check. ✗}} } $
$x=7$:
$\eqalign{\left|2-{x\over3}\right| \le & 0.01
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr \left|2-{{\color{red}7}\over3}\right|
\overset{?}{\le}& 0.01 &{\small\color{red}\quad\quad
\text{Substitute 7 for }x.}
\cr |2-2.\overline{3}|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Write }{7\over3}\text{ as }2.\overline{3}.} \cr 
|-0.\overline{3}|\overset{?}{\le}& 0.01
&{\small\color{red}\quad\quad \text{Subtract.}} \cr 0.\overline{3}\not\le
& 0.01 &{\small\color{red}\quad\quad
\text{Solution
does not check. ✗}} } $



 

Contact

If you are in need of technical support, have a question about advertising opportunities, or have a general question, please contact us by phone or submit a message through the form below.