Loading.
Hide Menu Show Menu

Math Help for Section 3.4, Page 131

Solving
Proportions

For the proportion

    $\displaystyle{a \over b} = {c \over
d}$,

the quantities a
and d are
called the extremes
of the
proportion, whereas b
and c are
called the means
of the proportion.
The following proof may help you understand why cross-multiplication
works.

Statement:  If
 $\displaystyle{a
\over b} =
{c \over d},$ then $ad = bc.$
Proof: $\displaystyle{a \over b}$ = $\displaystyle{c \over d}$      Write
assumption.
$\displaystyle{a \over b} \bullet b$ = $\displaystyle{c \over d}
\bullet b$
Use the
Multiplication Property of Equality to multiply each side by b.
$\displaystyle a$ = $\displaystyle{c \over d} \bullet b$ Cancel out b on the left side.
$\displaystyle a \bullet d$ = $\displaystyle{c \over d} \bullet b
\bullet d$
Use the
Multiplication Property of Equality to multiply each side by d.
$a \bullet d$ = $c \bullet b$ Cancel out d on the right side.
$a \bullet d$ = $b \bullet c$ Use the
Commutative Property of Multiplication to switch the order of b and c.
$ad$ = $bc$ The statement
is true.

Example
5(b): Tip


Be sure to put the quanity $x-2$ into parenthesis before
you cross multiply.

Example
5: Check


You can check the answer by confirming that the quotients on each side
of the proportion are equal.

$\eqalign{{\textbf{a.}\quad\quad\quad} {{50}
\over x} =& {2 \over
{28}}&{\small\color{red}\quad\quad\text{Write original
equation.}}  \cr {{50} \over {\color{red}700}}
\overset{?}{=}& {2 \over
{28}}&{\small\color{red}\quad\quad\text{Substitute 700 for }x.}  \cr 0.0714… =&
0.0714…&{\small\color{red}\quad\quad\text{Solution checks. }\checkmark} \cr} $

$\eqalign{{\textbf{b.}\quad\quad} {{x – 2} \over
5} =& {4 \over 3}&{\small\color{red}\quad\quad\text{Write
original equation.}} 
\cr {{{\textstyle\color{red}{{26} \over 3}} – 2} \over 5}
\overset{?}{=}& {4 \over
3}&{\small\color{red}\quad\quad\text{Substitute }{26 \over 3}\text{
for }x.}  \cr
{{{\textstyle{{26} \over 3}} – {\textstyle{6 \over 3}}} \over 5}
\overset{?}{=}& {4 \over
3}&{\small\color{red}\quad\quad\text{Rewrite 2 as }{6 \over
3}.}  \cr {{{\textstyle{{20}
\over 3}}} \over 5} \overset{?}{=}& {4 \over
3}&{\small\color{red}\quad\quad\text{Subtract.}}  \cr
{{20} \over 3} \bullet {1 \over 5} \overset{?}{=}& {4 \over
3}&{\small\color{red}\quad\quad\text{Invert divisor and
multiply.}}  \cr {{20} \over {15}}\overset{?}{=}&
{4 \over 3}&{\small\color{red}\quad\quad\text{Multiply.}}  \cr
{4 \over 3} =& {4 \over
3}&{\small\color{red}\quad\quad\text{Solution
checks. }\checkmark} \cr} $



 

Contact

If you are in need of technical support, have a question about advertising opportunities, or have a general question, please contact us by phone or submit a message through the form below.