Loading.
Hide Menu Show Menu

Math Help for Section 3.7, Page 155

Solving
Inequalities Involving Absolute Value

To see how to solve inequalities involving absolute value, consider the
following
comparisons.

  $|x|=2$ $|x|<2$     $|x|<2$
$x=-2$ and $x=2$ $-2<x<2$ $x<-2$ or $x>2$
 

These comparisons illustrate the rules in the box on page 89 for
solving inequalities
involving
absolute value.

Example
6: Tip

The solution set in set notation is $\{x|\,3<x<7\}$.

Study
Tip

To get an indication of the validity of a solution set of an
absolute value inequality, you should check
values
in the solution set and outside of the solution set. In Example 6 on
page 89 you
can check that $x=4$ is in the solution set and that $x=2$ and $x=8$
are not in the solution set.

Example
6: Check

The solution was found to be $3<x<7$. As stated above,
check that
$x=4$
satisfies the inequality and that $x=2$ and $x=8$ do not. 

$x=4$:
  $\eqalign{|x-5|< & 2
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr |{\color{red}4}-5|
\overset{?}{<}& 2 &{\small\color{red}\quad\quad
\text{Substitute 4 for }x.}
\cr |-1|\overset{?}{<}& 2
&{\small\color{red}\quad\quad \text{Subtract.}} \cr
1<& 2 &{\small\color{red}\quad\quad
\text{Solution
checks. }\checkmark} } $
$x=2$:
$\eqalign{|x-5|< & 2
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr |{\color{red}2}-5|
\overset{?}{<}& 2 &{\small\color{red}\quad\quad
\text{Substitute 2 for }x.}
\cr |-3|\overset{?}{<}& 2
&{\small\color{red}\quad\quad \text{Subtract.}} \cr
3\not<& 2 &{\small\color{red}\quad\quad
\text{Solution does not check. ✗}} } $
$x=8$:
$\eqalign{|x-5|<
& 2
&{\small\color{red}\quad\quad \text{Write original
inequality.}} \cr |{\color{red}8}-5|
\overset{?}{<}& 2 &{\small\color{red}\quad\quad
\text{Substitute 8 for }x.}
\cr |3|\overset{?}{<}& 2
&{\small\color{red}\quad\quad \text{Subtract.}} \cr
3\not<& 2 &{\small\color{red}\quad\quad
\text{Solution does not check. ✗}} } $



 

Contact

If you are in need of technical support, have a question about advertising opportunities, or have a general question, please contact us by phone or submit a message through the form below.