Properties of Quadratic Functions

Because the vertex is the highest or lowest point on a parabola, its *y*-coordinate is the *maximum value* or *minimum value* of the function. The vertex of a parabola lies on the axis of the parabola. So, the graph of the function is *increasing* on one side of the axis and *decreasing* on the other side.

EXAMPLE

Analyzing a Quadratic Function

Describe the domain and range of $f(x) = -\frac{1}{2}x^2 + 4x - 1$. Then determine where the function is increasing and decreasing.

SOLUTION

From the original function, it follows that $a = -\frac{1}{2}$, b = 4, and c = -1. Because *a* is negative, the parabola opens downward and the function has a maximum value. Calculate the coordinates of the vertex.

$$x = -\frac{b}{2a} = -\frac{4}{2(-\frac{1}{2})} = 4$$
 $f(4) = -\frac{1}{2}(4)^2 + 4(4) - 1 = 7$

The vertex of the parabola is (4, 7). So, the domain is all real numbers and the range is $y \le 7$. The function is increasing to the left of x = 4 and decreasing to the right of x = 4, as shown in the figure.

Exercises Within Reach®

Analyzing a Quadratic Function In Exercises 1-6, describe the domain and range of the function, and determine where the function is increasing or decreasing.

1. $f(x) =$	$4x^2 + 3$	2.	$g(x) = -2x^2 - 1$	3.	$h(x) = x^2 + 6x + 5$
4. $y = -\frac{1}{2}$	$\frac{3}{2}x^2 + 6x$	5.	$y = 3x^2 - 3x + 4$	6.	$y = -x^2 - 10x - 3$

