Properties of Quadratic Functions

Because the vertex is the highest or lowest point on a parabola, its y-coordinate is the maximum value or minimum value of the function. The vertex of a parabola lies on the axis of the parabola. So, the graph of the function is increasing on one side of the axis and decreasing on the other side.

Properties of Quadratic Functions

$$
f(x)=a x^{2}+b x+c, a>0
$$

- Domain: All real numbers
- Range: $y \geq f\left(-\frac{b}{2 a}\right)$
- Decreasing to the left of $x=-\frac{b}{2 a}$
- Increasing to the right of $x=-\frac{b}{2 a}$

$$
f(x)=a x^{2}+b x+c, a<0
$$

- Domain: All real numbers
- Range: $y \leq f\left(-\frac{b}{2 a}\right)$
- Increasing to the left of $x=-\frac{b}{2 a}$
- Decreasing to the right of $x=-\frac{b}{2 a}$

EXAMPLE Analyzing a Quadratic Function

Describe the domain and range of $f(x)=-\frac{1}{2} x^{2}+4 x-1$. Then determine where the

SOLUTION

From the original function, it follows that $a=-\frac{1}{2}, b=4$, and $c=-1$. Because a is negative, the parabola opens downward and the function has a maximum value. Calculate the coordinates of the vertex.

$$
x=-\frac{b}{2 a}=-\frac{4}{2\left(-\frac{1}{2}\right)}=4 \quad f(4)=-\frac{1}{2}(4)^{2}+4(4)-1=7
$$

The vertex of the parabola is $(4,7)$. So, the domain is all real numbers and the range is $y \leq 7$. The function is increasing to the left of $x=4$ and decreasing to the right of $x=4$, as shown in the figure.

Analyzing a Quadratic Function In Exercises 1-6, describe the domain and range of the function, and determine where the function is increasing or decreasing.

1. $f(x)=4 x^{2}+3$
2. $g(x)=-2 x^{2}-1$
3. $h(x)=x^{2}+6 x+5$
4. $y=-\frac{3}{2} x^{2}+6 x$
5. $y=3 x^{2}-3 x+4$
6. $y=-x^{2}-10 x-3$
